
NAG C Library Function Document

nag_zhprfs (f07pvc)

1 Purpose

nag_zhprfs (f07pvc) returns error bounds for the solution of a complex Hermitian indefinite system of
linear equations with multiple right-hand sides, AX ¼ B, using packed storage. It improves the solution
by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_zhprfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,
const Complex ap[], const Complex afp[], const Integer ipiv[],
const Complex b[], Integer pdb, Complex x[], Integer pdx, double ferr[],
double berr[], NagError *fail)

3 Description

nag_zhprfs (f07pvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides,
AX ¼ B, using packed storage. The function handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of nag_zhprfs (f07pvc) in terms of a single right-
hand side b and solution x.

Given a computed solution x, the function computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

ðAþ �AÞx ¼ bþ �b
j�aijj � �jaijj and j�bij � �jbij:

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i

jxi � x̂xij=max
i

jxij

where x̂x is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f07 – Linear Equations (LAPACK) f07pvc

[NP3645/7] f07pvc.1

2: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored and A is factorized as

PUDUHPT where U is upper triangular;

if uplo ¼ Nag Lower, the lower triangular part of A is stored and A is factorized as

PLDLHPT where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: nrhs – Integer Input

On entry: r, the number of right-hand sides.

Constraint: nrhs � 0.

5: ap½dim� – const Complex Input

Note: the dimension, dim, of the array ap must be at least maxð1; n� ðnþ 1Þ=2Þ.
On entry: the n by n original Hermitian matrix A as supplied to nag_zhptrf (f07prc).

6: afp½dim� – const Complex Input

Note: the dimension, dim, of the array afp must be at least maxð1; n� ðnþ 1Þ=2Þ.
On entry: details of the factorization of A stored in packed form, as returned by nag_zhptrf (f07prc).

7: ipiv½dim� – const Integer Input

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On entry: details of the interchanges and the block structure of D, as returned by nag_zhptrf
(f07prc).

8: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least maxð1;pdb� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdb� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.
On entry: the n by r right-hand side matrix B.

9: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order ¼ Nag ColMajor, pdb � maxð1;nÞ;
if order ¼ Nag RowMajor, pdb � maxð1; nrhsÞ.

10: x½dim� – Complex Input/Output

Note: the dimension, dim, of the array x must be at least maxð1;pdx� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdx� nÞ when order ¼ Nag RowMajor.

f07pvc NAG C Library Manual

f07pvc.2 [NP3645/7]

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix X is stored in x½ðj� 1Þ � pdxþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix X is stored in x½ði� 1Þ � pdxþ j� 1�.
On entry: the n by r solution matrix X, as returned by nag_zhptrs (f07psc).

On exit: the improved solution matrix X.

11: pdx – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order ¼ Nag ColMajor, pdx � maxð1; nÞ;
if order ¼ Nag RowMajor, pdx � maxð1;nrhsÞ.

12: ferr½dim� – double Output

Note: the dimension, dim, of the array ferr must be at least maxð1; nrhsÞ.
On exit: ferr½j� 1� contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

13: berr½dim� – double Output

Note: the dimension, dim, of the array berr must be at least maxð1; nrhsÞ.
On exit: berr½j� 1� contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

14: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, nrhs = hvaluei.
Constraint: nrhs � 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdx ¼ hvaluei.
Constraint: pdx > 0.

NE_INT_2

On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.
On entry, pdb ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdb � maxð1; nrhsÞ.
On entry, pdx ¼ hvaluei, n ¼ hvaluei.
Constraint: pdx � maxð1; nÞ.
On entry, pdx ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdx � maxð1; nrhsÞ.

f07 – Linear Equations (LAPACK) f07pvc

[NP3645/7] f07pvc.3

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-

point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most 5
steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Ax ¼ b;

the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real
operations.

The real analogue of this function is nag_dsprfs (f07phc).

9 Example

To solve the system of equations AX ¼ B using iterative refinement and to compute the forward and
backward error bounds, where

A ¼

�1:36þ 0:00i 1:58þ 0:90i 2:21� 0:21i 3:91þ 1:50i
1:58� 0:90i �8:87þ 0:00i �1:84� 0:03i �1:78þ 1:18i
2:21þ 0:21i �1:84þ 0:03i �4:63þ 0:00i 0:11þ 0:11i
3:91� 1:50i �1:78� 1:18i 0:11� 0:11i �1:84þ 0:00i

1
CCA

0
BB@

and

B ¼

7:79þ 5:48i �35:39þ 18:01i
�0:77� 16:05i 4:23� 70:02i
�9:58þ 3:88i �24:79� 8:40i
2:98� 10:18i 28:68� 39:89i

1
CCA

0
BB@ :

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by nag_zhptrf (f07prc).

9.1 Program Text

/* nag_zhprfs (f07pvc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

f07pvc NAG C Library Manual

f07pvc.4 [NP3645/7]

int main(void)
{

/* Scalars */
Integer i, j, n, nrhs, ap_len, afp_len;
Integer berr_len, ferr_len, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;
Nag_OrderType order;
/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *afp=0, *ap=0, *b=0, *x=0;
double *berr=0, *ferr=0;

#ifdef NAG_COLUMN_MAJOR
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07pvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &n, &nrhs);
ap_len = n * (n + 1)/2;
afp_len = n * (n + 1)/2;
berr_len = nrhs;
ferr_len = nrhs;

#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;

#else
pdb = nrhs;
pdx = nrhs;

#endif

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||

!(afp = NAG_ALLOC(afp_len, Complex)) ||
!(ap = NAG_ALLOC(ap_len, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)) ||
!(berr = NAG_ALLOC(berr_len, double)) ||
!(ferr = NAG_ALLOC(ferr_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A and B from data file, and copy A to AFP and B to X */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == ’U’)

uplo_enum = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

f07 – Linear Equations (LAPACK) f07pvc

[NP3645/7] f07pvc.5

}
if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A_UPPER(i,j).re, &A_UPPER(i,j).im);
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf(" (%lf , %lf)", &A_LOWER(i,j).re, &A_LOWER(i,j).im);

}
Vscanf("%*[^\n] ");

}
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}

Vscanf("%*[^\n] ");

for (i = 1; i <= n * (n + 1) / 2; ++i)
{

afp[i-1].re = ap[i-1].re;
afp[i-1].im = ap[i-1].im;

}
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

{
X(i,j).re = B(i,j).re;
X(i,j).im = B(i,j).im;

}
}

/* Factorize A in the array AFP */
f07prc(order, uplo_enum, n, afp, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07prc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute solution in the array X */
f07psc(order, uplo_enum, n, nrhs, afp, ipiv, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07psc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
f07pvc(order, uplo_enum, n, nrhs, ap, afp, ipiv, b, pdb,

x, pdx, ferr, berr, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07pvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print solution */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,

Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

f07pvc NAG C Library Manual

f07pvc.6 [NP3645/7]

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

Vprintf("%11.1e%s", berr[j-1], j%4==0 ?"\n":" ");
Vprintf("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

Vprintf("%11.1e%s", ferr[j-1], j%4==0 ?"\n":" ");
Vprintf("\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (afp) NAG_FREE(afp);
if (ap) NAG_FREE(ap);
if (b) NAG_FREE(b);
if (x) NAG_FREE(x);
if (berr) NAG_FREE(berr);
if (ferr) NAG_FREE(ferr);
return exit_status;

}

9.2 Program Data

f07pvc Example Program Data
4 2 :Values of N and NRHS
’L’ :Value of UPLO

(-1.36, 0.00)
(1.58,-0.90) (-8.87, 0.00)
(2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)
(3.91,-1.50) (-1.78,-1.18) (0.11,-0.11) (-1.84, 0.00) :End of matrix A
(7.79, 5.48) (-35.39, 18.01)
(-0.77,-16.05) (4.23,-70.02)
(-9.58, 3.88) (-24.79, -8.40)
(2.98,-10.18) (28.68,-39.89) :End of matrix B

9.3 Program Results

f07pvc Example Program Results

Solution(s)
1 2

1 (1.0000,-1.0000) (3.0000,-4.0000)
2 (-1.0000, 2.0000) (-1.0000, 5.0000)
3 (3.0000,-2.0000) (7.0000,-2.0000)
4 (2.0000, 1.0000) (-8.0000, 6.0000)

Backward errors (machine-dependent)
9.0e-17 5.8e-17

Estimated forward error bounds (machine-dependent)
2.6e-15 3.0e-15

f07 – Linear Equations (LAPACK) f07pvc

[NP3645/7] f07pvc.7 (last)

	f07pvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	ap
	afp
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

