f07 — Linear Equations (LAPACK) f07pve

NAG C Library Function Document

nag zhprfs (f07pvc)

1 Purpose

nag_zhprfs (f07pvc) returns error bounds for the solution of a complex Hermitian indefinite system of
linear equations with multiple right-hand sides, AX = B, using packed storage. It improves the solution
by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_zhprfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,
const Complex ap[], const Complex afp[], const Integer ipiv([],
const Complex b[], Integer pdb, Complex x[], Integer pdx, double ferr[],
double berr[], NagError *fail)

3 Description

nag_zhprfs (f07pvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian indefinite system of linear equations with multiple right-hand sides,
AX = B, using packed storage. The function handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of nag_zhprfs (f07pvc) in terms of a single right-
hand side b and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that = is the exact solution of a
perturbed system

(A+6A)xr=0b+ b
|6a;;| < Blay;| and [6b;| < B|b;].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — &;|/ max |z;|
1 1

where Z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] 07pve. 1

f07pve NAG C Library Manual

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

if uplo = Nag_Upper, the upper triangular part of A is stored and A is factorized as
PUDU" P where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as
PLDLY P where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: ap[dim] — const Complex Input
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: the n by n original Hermitian matrix A as supplied to nag_zhptrf (f07prc).

6: afp[dim] — const Complex Input
Note: the dimension, dim, of the array afp must be at least max(l,n x (n+1)/2).

On entry: details of the factorization of A stored in packed form, as returned by nag_zhptrf (f07prc).

7: ipiv[dim] — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1, n).
On entry: details of the interchanges and the block structure of D, as returned by nag zhptrf
(f07prc).

8: b[dim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

9: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

10: x[dim] — Complex Input/Output

Note: the dimension, dim, of the array x must be at least max(1,pdx x nrhs) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag_RowMajor.

07pve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07pve

If order = Nag_ColMajor, the (¢, j)th element of the matrix X is stored in x[(j — 1) X pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 5 — 1].

On entry: the n by r solution matrix X, as returned by nag_zhptrs (f07psc).

On exit: the improved solution matrix X.

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

12: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).
On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,... 7

13: berr[dim| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,....n.

14: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, n = (value).
Constraint: n > 0.
On entry, nrhs = (value).
Constraint: nrhs > 0.
On entry, pdb = (value).
Constraint: pdb > 0.
On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT 2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

[NP3645/7] f07pve.3

f07pve NAG C Library Manual

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n? real floating-

point operations. Each step of iterative refinement involves an additional 24n* real operations. At most 5
steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;

the number is usually 5 and never more than 11. Each solution involves approximately 8n? real
operations.

The real analogue of this function is nag_dsprfs (f07phc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

—1.36 + 0.007 1.58 +0.90¢ 221 -0.21¢ 3.91 +1.50¢
1.58 —090; —8.87+0.00¢ —1.84—-0.03: —1.78+1.18¢
2214021 —1.84+0.03¢: —4.63 +0.00¢ 0.11 +0.11%
391 -1.50¢ —1.78 —1.18: 0.11 —0.11¢ —1.84 +0.00¢

A:

and

7.79 + 548 —35.39+ 18.01¢
—0.77 — 16.05:¢ 4.23 —70.02¢
—9.58 4 3.88¢ —24.79 — 8.40¢

298 —10.18: 28.68 —39.89¢

B:

Here A is Hermitian indefinite, stored in packed form, and must first be factorized by nag_zhptrf (f07prc).

9.1 Program Text

/* nag_zhprfs (f07pvc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

07pve.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07pve

int main(void)
{
/* Scalars */
Integer i, j, n, nrhs, ap_len, afp_len;
Integer berr_len, ferr_len, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;
Nag_OrderType order;
/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *afp=0, *ap=0, *b=0, *x=0;
double *berr=0, *ferr=0;

#ifdef NAG_COLUMN_MAJOR
#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
#define A_UPPER(I,J) apl[Jd*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)%pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2#n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + JT - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f07pvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");
Vscanf ("%$1d%1d%*["\n] ", &n, &nrhs);
ap_len = n * (n + 1)/2;
afp_len = n * (n + 1)/2;
berr_len = nrhs;
ferr_len = nrhs;
#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else

pdb = nrhs;

pdx = nrhs;
#endif

/* Allocate memory */

if (!(ipiv = NAG_ALLOC(n, Integer)) ||
afp = NAG_ALLOC(afp_len, Complex)) ||

ap = NAG_ALLOC(ap_len, Complex)) ||

b = NAG_ALLOC(n * nrhs, Complex)) ||

X = NAG_ALLOC(n * nrhs, Complex)) ||

berr = NAG_ALLOC (berr_len, double)) ||

ferr = NAG_ALLOC(ferr_len, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A and B from data file, and copy A to AFP and B to X #*/
Vscanf (" ' %1s ’'%*[*"\n] ", uplo);
if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

[NP3645/7] 07pve.s

f07pve NAG C Library Manual

}
if (uplo_enum == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A_UPPER(i,j).re, &A_UPPER(i,])
¥
Vscanf ("sx["\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A_LOWER(i,]j).re, &A_LOWER(i,])
¥
Vscanf ("$x[*\n] ");
}
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("$*[*\n] ");

for (i = 1; i <=n * (n + 1) / 2; ++i)
{

}
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
{
X(i,j).re = B(i,]J).re;
X(i,j).im = B(i,J).im;
}
}

/* Factorize A in the array AFP *x/
fO7prc(order, uplo_enum, n, afp, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07prc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Compute solution in the array X */
fO7psc(order, uplo_enum, n, nrhs, afp, ipiv, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from f07psc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* Improve solution, and compute backward errors and */

/* estimated bounds on the forward errors */

fO07pvc(order, uplo_enum, n, nrhs, ap, afp, ipiv, b, pdb,
x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f07pvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print solution */
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{

f07pvc.6

.im) ;

.im) ;

[NP3645/7]

f07 — Linear Equations (LAPACK) f07pve

Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

Vprintf ("$1l.1le%s", berr[j-1]1, j%4==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++3j)

Vprintf ("$11l.1le%s", ferr([j-1]1, j%4==0 2"\n":" ");
Vprintf ("\n") ;

END:

if (ipiv) NAG_FREE(ipiv);

(
if (afp) NAG_FREE (afp);
if (ap) NAG_FREE (ap);
if (b) NAG_FREE (b);
if (x) NAG_FREE(x);
if (berr) NAG_FREE (berr);

if (ferr) NAG_FREE(ferr);
return exit_status;

9.2 Program Data

fO07pvc Example Program Data
4 2 :Values of N and NRHS

'L’ :Value of UPLO
(-1.36, 0.00)

(1.58,-0.90) (-8.87, 0.00)

(2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)

(3.91,-1.50) (-1.78,-1.18) (0.11,-0.11) (-1.84, 0.00) :End of matrix A
(7.79, 5.48) (-35.39, 18.01)

(-0.77,-16.05) (4.23,-70.02)

(-9.58, 3.88) (-24.79, -8.40)

(2.98,-10.18) (28.68,-39.89) :End of matrix B

9.3 Program Results

fO07pvc Example Program Results

Solution(s)

1 2
1.0000,-1.0000) (3.0000,-4.0000)
1.0000, 2.0000) (-1.0000, 5.0000)
3.0000,-2.0000) (7.0000,-2.0000)
2 (-8.)

(
(_
(
(2.0000, 1.0000) -8.0000, 6.0000

B w N R

Backward errors (machine-dependent)

9.0e-17 5.8e-17
Estimated forward error bounds (machine-dependent)
2.6e-15 3.0e-15

[NP3645/7] f07pve.7 (last)

	f07pvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	ap
	afp
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

